Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application.
نویسندگان
چکیده
Here we report a simple strategy to prepare three-dimensional graphene gel coated on nickel foam for supercapacitor applications by a simple 'dipping and drying' process. The supercapacitors based on three-dimensional graphene gel (G-gel@NF-1) exhibited high rate capability of 152 F g(-1) at 0.36 A g(-1) and 107 F g(-1) at 90.9 A g(-1), good cycle stability with capacitance retention of 89% after 2000 cycles and low internal resistance (0.58 Ω). Furthermore, a flexible electrode (G-gel@NF-2) was obtained by etching most of the nickel foam but maintains the conductive backbone of the nickel foam, which greatly reduces the total mass of the electrode (can be reduced from 30 mg cm(-2) to less than 5 mg cm(-2)), and can be compressed from a thickness of 1 mm to ∼30 μm. With the aid of a conductive network composed of a small amount of nickel, G-gel@NF-2 still has good performance in high rate capability and displays excellent flexible properties. The specific capacitance when the mass density of the electrode was only 5.4 mg cm(-2) still reached ∼115 F g(-1). This strategy can improve the rate capability performance, greatly reduce the mass of the electrode, and lower the fabrication cost of supercapacitors.
منابع مشابه
High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g(-1) at the current density of 10 ...
متن کاملElectrodeposition of porous graphene networks on nickel foams as supercapacitor electrodes with high capacitance and remarkable cyclic stability
UNLABELLED We describe a facile, low-cost, and green method to fabricate porous graphene networks/nickel foam (PG/NF) electrodes by electrochemical deposition of graphene sheets on nickel foams (NFs) for the application of supercapacitor electrodes. The electrodeposition process was accomplished by electrochemical reduction of graphene oxide (GO) in its aqueous suspension. The resultant binder-...
متن کاملNanofoaming to Boost the Electrochemical Performance of Ni@Ni(OH)2 Nanowires for Ultrahigh Volumetric Supercapacitors.
Three-dimensional free-standing film electrodes have aroused great interest for energy storage devices. However, small volumetric capacity and low operating voltage limit their practical application for large energy storage applications. Herein, a facile and novel nanofoaming process was demonstrated to boost the volumetric electrochemical capacitance of the devices via activation of Ni nanowir...
متن کامل3D graphene supported MoO2 for high performance binder-free lithium ion battery.
In this work, we report the synthesis of MoO2 nanoparticles grown on three dimensional graphene (3DG) via the reduction of α-MoO3 nanobelts through a facile chemical vapor deposition (CVD) approach under argon protection gas environment. In this synthesis approach, the presence of hydrophobic 3DG promoted the Volmer-Weber growth of MoO2 nanoparticles (30-60 nm). The as-prepared MoO2-3DG nanocom...
متن کاملEffect of processing parameters on the electrochemical performance of graphene/ nickel ferrite (G-NF) nanocomposite
Fuel cells, secondary batteries and capacitors are among many promising energy storage devices. In particular, supercapacitors have attracted much attention because of their long life cycle and high power density. Graphene/nickel ferrite(G-NF) based supercapacitors were successfully fabricated through a one-step facile solvothermal route. Effects of synthesis conditions i.e. solvothermal time a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2014